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Abstract. QED radiative corrections have been calculated for leptonic and hadronic variables in parity-
violating elastic ep scattering. For the first time, the calculation of the asymmetry in the elastic radiative
tail is performed without the peaking-approximation assumption in hadronic variables configuration. This
method has been validated in a comparison with the PVA4 data. It has been also used to evaluate the ra-
diative corrections to the parity-violating asymmetry measured in the G0 experiment. The results obtained
are here presented.

PACS. 25.30.Bf Elastic electron scattering – 13.60.-r Photon and charged-lepton interactions with hadrons

1 Introduction

Elastic scattering of longitudinally polarized electrons is
subject to parity violation through the interference be-
tween γ and Z0 exchange. These experiments give access
to the weak nucleon form factors (FF), which are the
equivalent, in the weak sector, of the usual electromag-
netic form factors GE and GM . The weak nucleon form
factors are related, in turn, to the strange form factors
Gs
E and Gs

M , which are the contributions of strange cur-
rents to the form factors (see [1] and the following review
articles [2–5]). According to QCD, this strangeness contri-
bution arises from the presence of ss̄ pairs in the nucleon
sea. Many experiments have been performed recently or
are still running at Bates (SAMPLE [6–8]), Mainz (PV-
A4 [9,10]) and Jefferson Lab (G0 [11] and HAPPEX [12]).

Electromagnetic radiation produced from the emission
of a real or virtual photon by the electron (incoming or
outgoing) or by the target (before or after interaction),
gives rises to a radiative tail which extends to very low
energies (in theory, down to zero energy for the scattered
electron). Since detectors have an experimental resolution
and since cuts are used in the data analysis, the mea-
sured cross-section and asymmetry have to be corrected
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in order to be compared to theoretical models. The first
calculations applied to elastic ep scattering were done by
Tsai [13], followed by a series of review papers [14–16].
This formalism has been later extended to scattering of
polarized electrons [17]. All these calculations were done
for experiments in which the scattered electron is detected,
which was the case of SAMPLE, PV-A4, HAPPEX or G0

at backward angles [18]. The originality of the G0 experi-
ment at forward angles was the detection of recoil protons.
In this case, some of the approximations commonly used
when scattered electrons are detected, such as the peak-
ing approximation, are no more valid. Thanks to its large
mass, radiative emission from the proton is negligible but
the proton kinematics is affected by the radiative emission
from the electron (angle, energy, Q2).

QED radiative corrections have been calculated for
hadronic kinematic variables in ep elastic scattering [19]
and applied to recoil proton polarization. In this case, a
method based on an electron structure-function represen-
tation, which is the analog of the Drell-Yann representa-
tion [20], was used. These calculations were applied to ep
scattering experiments done at Jefferson Lab [21], aim-
ing to determine the ratio of electric to magnetic pro-
ton form factors Gp

E/G
p
M at high momentum transfer

as proposed by Akhiezer and Rekalo [22]. The classical
method for computing corrections is based on the sepa-
ration of the momentum phase space into hard- and soft-
photons contributions to avoid infrared divergences [13].
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This introduces a cutoff parameter which makes this me-
thod not easily applicable to construct an event operator.
Bardin and Shumeiko [23] proposed a covariant cancel-
lation method of infrared divergences which does not in-
troduce additional parameters; however, a cutoff has still
to be introduced for generating real radiated photons.

In the present work we calculate the corrections in
both the leptonic and hadronic variables using an origi-
nal method which is free of infrared divergences. Its in-
terest is that it is exact and it can be integrated easily
into numerical simulation programs such as GEANT. We
then apply it to G0 forward angles using the G0-GEANT
code [24]. Another original feature of the present calcu-
lation is the inclusion of Z0 exchange, in addition to γ
exchange, allowing to calculate the electroweak asymme-
try of the radiative tail. We then calculate the corrected
quantities of interest: integrated number of counts, time-
of-flight (t.o.f.) spectra, Q2 distributions. A full account
of the present calculations is given in the thesis of Hayko
Guler [25] (in French).

In sect. 2 we develop the formalism and define the La-
grangians, in sect. 3 we describe our method for avoiding
divergences, in sect. 4 we describe briefly the G0 appara-
tus and simulation method. The results are given in sect. 5
and we conclude in sect. 6.

2 Theoretical formalism for elastic scattering

The data analysis of parity-violating electron-nucleon
scattering experiments involve the extraction of an asym-
metry in the helicity-correlated cross-section. The raw
data are first converted into an experimentally measured
asymmetry (Aexp). That means that the false asymmetry
due to helicity-correlated fluctuations in intensity, energy,
positions and angles of the electron beam have already
been taken into account. We assume also that background
subtraction has already been done.

The asymmetry is commonly defined as

A =
( dσ
dΩ )

+ − ( dσ
dΩ )

−

( dσ
dΩ )

+
+ ( dσ

dΩ )
−
, (1)

where ( dσ
dΩ )

+
and ( dσ

dΩ )
−

are the cross-sections associated
with incident electrons having helicity plus and minus,
respectively. The plus (minus) helicity corresponds to the
spin of the electron being aligned and in the same direction
as (opposite to) its momentum. Calculation of the cross-
section requires the knowledge of the amplitudes which
are derived from the currents in the Feynman formalism.

The elastic-scattering amplitude has two components
corresponding to the electromagnetic partMγ and to the
weak part MZ

M (k′, p′, he′ , hp′ , k, p, he, hp) =
∑

i=γ,Z

Mi (k
′, p′, he′ , hp′ , k, p, he, hp) , (2)

where k and k′ are the incident and scattered electron,
p and p′ are the incident and recoil proton momentum,
respectively. he, hp and he′ , hp′ are the electron and proton
helicity in the initial and final state.

Mγ = −ie2 1

q2
JPν em jνem , (3)

where jνem is the Dirac leptonic electromagnetic current:

jνem = ū(k′, he′)γ
νu(k, he) , (4)

and JPν em is the hadronic part of the electromagnetic cur-
rent. The weak amplitude is given by:

MZ = −i G

2
√
2

1

1− q2/MZ
2

{(
JPν nc + JPν nc5

)
jνweak

−
(
JP

ν

nc + JP
ν

nc5

) qνqµ

MZ
2 jµweak

}
(5)

and the weak currents are obtained from

jµV = geV ū(k′, he′) γ
µ u(k, he) , (6)

jµA = geA ū(k′, he′) γ
µγ5 u(k, he) , (7)

jµweak = jµV + jµA , (8)

where G is the Fermi constant, geV and geA are the weak
vector and axial charges, respectively. For electron scatter-
ing and at tree level they reduce to geV = −1 + 4 sin2 θW
and geA = 1, respectively.

JPν nc and JPν nc5 are the hadronic weak currents. The
hadronic structure is parametrized in terms of form fac-
tors:

JEMµ = 〈x′|ĴEMµ|x〉 (9)

= Ux′

[
F x

1 (Q
2)γµ + i

F x
2 (Q

2)

2M
σµνqν

]
Ux , (10)

JNCµ = 〈x′|ĴNCµ|x〉 (11)

= Ux′

[
F̃ x

1 (Q
2)γµ + i

F̃ x
2 (Q

2)

2M
σµνqν

]
Ux , (12)

JNCµ5 = 〈x′|ĴNCµ5|x〉 (13)

= Ux′

[
G̃x
A(Q

2)γµ + i
G̃x
P (Q

2)

M
qµ

]
γ5

Ux , (14)

where x = p, n represents a proton p or a neutron n and
Ux and Ux′ are the Dirac spinors for the nucleon in the
entrance and exit channel, respectively. F x

1 and F x
2 are
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the electromagnetic form factors, F̃ x
1 and F̃ x

2 are the neu-

tral weak vector form factors and G̃x
A and G̃x

P are, respec-
tively, the axial and pseudo-scalar form factors. The latter
enters in the cross-section and asymmetry through aMZ

squared term which is totally negligible.
The observables are usually expressed in terms of the

Sachs form factors Gx
E , G

x
M , G̃x

E and G̃x
M rather than the

Fermi and Dirac form factors F x
1 , F

x
2 , F̃

x
1 , F̃

x
2 :

Gx
E(Q

2) = F x
1 (Q

2)− τF x
2 (Q

2) , (15)

Gx
M (Q2) = F x

1 (Q
2) + F x

2 (Q
2) ,

G̃x
E(Q

2) = F̃ x
1 (Q

2)− τ F̃ x
2 (Q

2) , (16)

G̃x
M (Q2) = F̃ x

1 (Q
2) + F̃ x

2 (Q
2) ,

where τ = Q2

4Mp
2 is a kinematic factor andMp is the proton

mass.
The helicity-correlated cross-section is given by

d2σhe
dΩe′

=
1

16(2π)2
|k ′|2
M |k|

×1

2

∑′ |M|2∣∣∣Ep′ |k′|+ Ee′(|k′| − |k| cos(θe′))
∣∣∣
, (17)

where the summation
∑′

is performed over all the spin
variables except the incident electron helicity. The asym-
metry can then be calculated from eq. (1):

ALR(eN) = − GFQ
2

4πα
√
2

1

ε(Gx
E)

2
+ τ(Gx

M )
2

×
{
εGx

E G̃
x
E + τ Gx

M G̃x
M − (1− 4 sin2θW ) ε′Gx

M G̃x
A

}

(18)

in which the Q2 -dependence has been omitted for clarity
of notation. ε, ε′ are kinematic factors given by

ε =
1

1 + 2(1 + τ)tan2 θe′
2

, (19)

ε′ =
√
τ(1 + τ)(1− ε2) , (20)

θe′ is the electron scattering angle and θW is the Weinberg
angle.

The ultimate purpose of these experiments being to
determine the strange content of the nucleon, one must
isolate the contribution of the s-quark in the nucleon form
factors. In order to do that, we decompose the electromag-
netic, neutral and axial currents according to the different
flavor contributions f = u, d, s:

〈x′|ūfγµuf |x〉 ≡ (21)

Ux′

(
F f,x

1 (Q2)γµ + i
F f,x

2 (Q2)

2M
σµνq

ν
)

Ux , (22)

〈x′|ūfγµγ5uf |x〉 ≡ (23)

Ux′

(
G̃f,x
A (Q2)γµ + i

G̃f,x
P (Q2)

M
qµ

)
γ5 Ux , (24)

where uf and ūf are the quarks fields. The pseudo-scalar

form factors G̃f,x
P being ignored, there are 18 form factors

to be evaluated: 9 for the proton and 9 for the neutron. In
order to reduce that number one uses charge symmetry,
assuming that the p and the n are members of a perfect
isospin doublet. Omitting the Q2-dependence for clarity:

Fu
1 ≡ Fu,p

1 = F d,n
1 , Fu

2 ≡ Fu,p
2 = F d,n

2 , (25)

F d
1 ≡ F d,p

1 = Fu,n
1 , F d

2 ≡ F d,p
2 = Fu,n

2 ,

F s
1 ≡ F s,p

1 = F s,n
1 , F s

2 ≡ F s,p
2 = F s,n

2 ,

Gu
A ≡ G̃u,p

A = G̃d,n
A ,

Gd
A ≡ G̃d,p

A = G̃u,n
A ,

Gs
A ≡ G̃s,p

A = G̃s,n
A ,

After combining eqs. (15), (16) and eq. (25), the tree-
level asymmetry can be finally expressed in terms of
the electromagnetic, axial and strange nucleon form fac-
tors [26]:

ALR(ep) = −
GFQ

2

4πα
√
2

{
(1− 4sin2θ

W
)

−εG
p
EG

n
E + τGp

MGn
M

ε(Gp
E)

2
+ τ(Gp

M )
2

}

+
GFQ

2

4πα
√
2

εGp
E

ε(Gp
E)

2
+ τ(Gp

M )
2 G

s
E

+
GFQ

2

4πα
√
2

τGp
M

ε(Gp
E)

2
+ τ(Gp

M )
2 G

s
M

+
GFQ

2

4πα
√
2

(1− 4sin2θW ) ε′Gp
M

ε(Gp
E)

2
+ τ(Gp

M )
2 G̃p

A . (26)

The basic parameters entering in the formula at tree level
are α, GF and sin2 θW . They are known to 10−4 or better.
Higher-order electroweak radiative corrections introduce
correction parameters Rp

V and Rn
V which can be computed

from the Standard Model [27]. The full (including higher-
order corrections) asymmetry becomes

ALR(ep) = −
GFQ

2

4πα
√
2

{
(1− 4sin2θW )(1 +Rp

V )

−(1 +Rn
V )

εGp
EG

n
E + τGp

MGn
M

ε(Gp
E)

2
+ τ(Gp

M )
2

}

+
GFQ

2

4πα
√
2
(1 +R

(0)
V )

εGp
E

ε(Gp
E)

2
+ τ(Gp

M )
2 G

s
E

+
GFQ

2

4πα
√
2

(1 +R
(0)
V )

τGp
M

ε(Gp
E)

2
+ τ(Gp

M )
2 G

s
M

+
GFQ

2

4πα
√
2

(1− 4sin2θW ) ε′Gp
M

ε(Gp
E)

2
+ τ(Gp

M )
2 G̃p

A . (27)
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When recoil protons are detected instead of scattered
electrons, the helicity-correlated cross-section becomes

d2σhe
dΩp′

=
1

16(2π)2
|p′|2
M |k|

×1

2

∑′ |M|2∣∣∣Ee′ |p ′|+ Ep′(|p′| − |k| cos(θp′))
∣∣∣
. (28)

The asymmetry calculation follows the same steps as for
scattered-electron detection.

3 QED radiative corrections

3.1 Parity-violating experiment representation in
leptonic variables

The aim of the procedure is to get a differential cross-
section d3σ/dΩe′dEe′ without any singularity in the full
electron spectrum. We divide the scattered-electron en-
ergy interval into two regions. The first one, Ee′ min ≤
Ee′ ≤ Ee′ cut where Ee′ cut ≡ Ee′ elas −∆Ee′ corresponds
to “hard photons” with a minimum energy Ee′ min which
may be of the order of few MeV. The second one is de-
fined by Ee′ cut ≤ Ee′ ≤ Ee′ elas which corresponds to the
“soft-photon” region. The maximum energy of the outgo-
ing electron corresponds to the elastic peak and is denoted
by Ee′ elas. The first requirement is that the integral

∫ Ee′ elas

Ee′ min

d3σ

dΩe′dEe′
dEe′ =

∫ Ee′ cut

Ee′ min

d3σ

dΩe′dEe′
dEe′

+

∫ Ee′ elas

Ee′ cut

d3σ

dΩe′dEe′
dEe′ (29)

should be as much as possible independent of the cutoff
energy ∆Ee′ .

The three-dimensional differential cross-section which
appears in the first term in the right-hand side of (29)
is obtained from the five-dimensional differential cross-
section:

d3σ

dΩe′dEe′
=

∫
d5σ

dΩe′dEe′dΩγ
dΩγ (30)

corresponding to the bremsstrahlung process e + p →
e+p+γ. The two Feynman diagrams describing this pro-
cess are displayed in fig. 1. The integral defined in (30)
may be calculated in the peaking approximation when the
scattering angle of the detected electron is not too small,
which is the case for most experiments. In particular, this
approximation is very good for the PV-A4 experiment at
forward angles (30◦ ≤ θ ≤ 40◦) and for the PV-A4 and G0

experiments at backward angles. The final result is found
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Fig. 1. Real-photon emission in virtual-photon exchange.

I(∆Ee′)

∆Ee′

Ee′ elas

Fig. 2. Dependence of the right-hand side of eq. (29) with
∆Ee′ in the A4 experiment: Ee = 0.855 GeV, θe′ = 35◦.

to be [14,28]:

d3σ

dΩe′dEe′
≈
[ d3σ

dΩe′dEe′

]

peaking
=Ks

d2σ
0
(Ee s, Q

2
s)

dΩe′

+Kp
d2σ

0
(Ee, Q

2
p)

dΩe′
, (31)

where the index 0 stands for the Born elastic differential
cross-section. The term with the s (respectively p) index
represents the contribution of the left (right) Feynman
diagram of fig. 1. The coefficients Ks and Kp are kinematic
factors.

The second term in the right-hand side of (29) is usu-
ally expressed as

∫ Ee′ elas

Ee′ cut

d3σ

dΩe′dEe′
dEe′ =

(
1 + δ(∆Ee′)

) d2σ
0
(Ee, Q

2)

dΩe′
,

(32)
where the theoretical expression of δ(∆Ee′) is given in [14,
28]. The numerical calculation of the right-hand side of
eq. (29) is shown in fig. 2 for the PV-A4 parity-violating
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Fig. 3. Comparison of the experimental (solid line) and simu-
lated spectra (filled grey areas) for the PV-A4 experiment [30].
The light-grey area corresponds to the simulated elastic ep

scattering plus radiative corrections.

experiment. The minimum value of ∆Ee′ in this kinemat-
ics is about 2 MeV.

An analytic expression for the three-dimensional dif-
ferential cross-section in the energy range Ee′ cut ≤ Ee′ ≤
Ee′ elas can be defined as

( d3σ

dΩe′dEe′

)

anal
= a0(θe′) + a1(θe′)Ee′ + a2(θe′)E

2
e′ .

(33)
The three parameters a0, a1 and a2 are fixed using the
three conditions:

i) at Ee′ = Ee′ cut:
[ d3σ

dΩe′dEe′

]

peaking
=
( d3σ

dΩe′dEe′

)

anal
, (34)

ii) at Ee′ = Ee′ cut:

∂

∂Ee′

[ d3σ

dΩe′dEe′

]

peaking
=

∂

∂Ee′

( d3σ

dΩe′dEe′

)

anal
, (35)

iii)

∫ Ee′ elas

Ee′ cut

( d3σ

dΩe′dEe′

)

anal
dEe′ =

(
1 + δ(∆Ee′)

)

×d2σ0(Ee, Q
2)

dΩe′
. (36)

Full simulations performed with the Monte Carlo method
and the experimental setup in the angular range between
40◦ ≤ θ◦ ≤ 30 at Ee = 0.855 GeV [29,30] have shown that
the final spectrum is, within the experimental resolution,
independent of the cutoff parameter∆Ee′ when its value is
increased by a factor 2 to 4. The good agreement between
the model and the PV-A4 experiment can be seen in fig. 3.

The simulated parity-violating asymmetry is then de-
fined as

A =





Aelas, Ee′ cut ≤ Ee′ ≤ Ee′ elas,

KsσsAs +KpσpAp

Ksσs +Kpσp , Ee′ min ≤ Ee′ ≤ Ee′ cut,
(37)

where σi ≡ d2σ0(Ee,s, Q
2
i )/dΩe′ , i = s, p. The asymme-

tries As and Ap are the Born asymmetries calculated for
the kinematics of the s and p channels through the rela-
tions given in the previous section.

3.2 Parity-violating experiment in proton variables

We describe here the method developed to take into ac-
count the internal radiative corrections when the proton,
instead of the electron, is detected. Again, we will ob-
tain for the proton spectrum a differential cross-section
d3σ/dΩp′dEp′ without any singularity. The extension of
the method derived for the electrons will give also the
parity-violating asymmetry in the proton channel. As in
the electron case, we define Ep′ cut ≡ Ep′ elas −∆Ep′ and
we require the integral I(∆Ep′)

∫ Ep′ elas

Ep′ min

d3σ

dΩp′dEp′

dEp′ =

∫ Ep′ cut

Ep′ min

d3σ

dΩp′dEp′

dEp′

+

∫ Ep′ elas

Ep′ cut

d3σ

dΩp′dEp′

dEp′ (38)

to be as much as possible independent of the energy cut-
off ∆Ep′ . We have to modify the method of the previous
section for two reasons. First, as we detect the proton, the
differential cross-section is now given by

d3σ

dΩp′dEp′

=

∫
d5σ

dΩp′dEp′dΩγ
dΩγ . (39)

Very forward angles of the outgoing electrons are allowed
when the integration over all the directions of the pho-
ton is performed, so the cross-section has to be calculated
at the amplitude level to be sure that gauge invariance is
respected. Secondly, as we are interested to correct the ex-
perimental asymmetry from the internal radiative contri-
bution, we need to introduce two more Feynman diagrams
in the calculation, as shown in fig. 4.

The amplitude of the reaction e + p → e + p + γ is
written as

M (k′, p′, he′ , hp′ , pγ , hγ , k, p, he, hp) =
∑

i=I,···,IV

Mi (k
′, p′, he′ , hp′ , pγ , hγ , k, p, he, hp) . (40)

The four-vectors of the exchanged photon and Z0 propa-
gators are expressed in terms of the kinematic variables:

q = k − k′ − pγ = p′ − p , (41)

x1 = k − pγ , x2 = k′ + pγ = k + p− p′ . (42)
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Fig. 4. Real-photon emission in virtual-Z0 exchange.

The amplitudes I and III due to the exchanged photon
with the propagator −igνν′/q2 have one term:

MI = ie3
1

x2
1 −m2

e

1

q2
JPν em T νµI em εµ

?

(pγ , hγ) , (43)

T νµI em = ū(k′, he′) γ
ν (x1/+me)γ

µ u(k, he) , (44)

MIII = ie3
1

x2
2 −m2

e

1

q2
JPν em TµνIII em εµ

?(pγ , hγ), (45)

TµνIII em = ū(k′, he′) γ
µ (x2/+me)γ

ν u(k, he) , (46)

while the amplitudes II and IV due to the exchange of the
Z0 with the propagator i(−gνν′ +qνqν′/MZ

2)/(q2−MZ
2)

have each two different contributions:

MII = ie
G

2
√
2

1

x
2

1 −m2
e

1

1− q2/MZ
2

×
{(

JPν nc + J
P

ν nc5

)
T νµII εµ

?(pγ , hγ)

−
(
JP

ν′

nc + JP
ν′

nc5

) qνqν′

MZ
2 T νµII εµ

?(pγ , hγ)

}
, (47)

T νµIIV = geV ū(k′, he′) γ
ν(x1/+me)γ

µ u(k, he), (48)

T νµIIA = geA ū(k′, he′) γ
νγ5(x1/+me)γ

µ u(k, he), (49)

T νµII = T νµIV V + T νµIVA, (50)

MIV = ie
G

2
√
2

1

x2
2 −m2

e

1

1− q2/MZ
2

×
{(

JPν nc + JPν nc5

)
TµνIV εµ

?(pγ , hγ)

−
(
JP

ν′

nc + JP
ν′

nc5

) qνqν′

MZ
2 TµνIV εµ

∗(pγ , hγ)

}
, (51)

TµνIV V = geV ū(k′, he′) γ
µ(x2/+me)γ

ν u(k, he), (52)

TµνIVA = geA ū(k′, he′) γ
µ(x2/+me)γ

νγ5 u(k, he), (53)

TµνIV = TµνIV V + TµνIVA . (54)

In the energy range where the parity-violating exper-
iments are performed (0.1 ≤ Q2 ≤ 1 (GeV/c)2, terms
proportional to 1/MZ

2 are neglected, therefore:

MII ≈ ie
G

2
√
2

1

x2
1 −m2

e

×
{(

JPν nc + JPν nc5

)(
T νµIIV + T νµIVA

)
εµ

?

(pγ , hγ)

}
,

(55)

and

MIV ≈ ie
G

2
√
2

1

x2
2 −m2

e

×
{(

JPν nc+J
P
ν nc5

)(
TµνIV V +TµνIVA

)
εµ
?(pγ , hγ)

}
.

(56)

The total amplitude is the sum of two terms,

M =MPC +MPV . (57)

The interference of these two terms will produce the
parity-violating asymmetry. The parity-conserving ampli-

tude MPC
is due to photon exchange and it contains a

part of the Z0 exchange. The parity-violating amplitude
MPV is due to part of the Z0 exchange contribution in the
Feynman diagrams II and IV. Explicitly, this amplitude is

MPV =MPV
II +MPV

IV , (58)

MPV
II = ie

G

2
√
2

1

x2
1 −m2

e

×
(
JPν nc T

νµ
IIA + JPν nc5 T

νµ
IIV

)
εµ
?(pγ , hγ), (59)

MPV
IV = ie

G

2
√
2

1

x2
2 −m2

e

×
(
JPν nc T

µν
IVA + JPν nc5 T

µν
IV V

)
εµ
∗(pγ , hγ). (60)

The differential cross-section is then calculated in the lab-
oratory system in terms of the amplitudes by

d5σ

dΩp′dEp′dΩγ
=

1

32(2π)5
|p′|Eγ

M |k|

×1

4

∑ |M|2
|Eγ + Ee′ + uγ · (p′ − k)| , (61)

where the summation is performed over all the helicity
states of the incoming electron, the target, the outgoing
proton and the outgoing photon. The differential cross-
section of the outgoing proton is then expressed as in (39),
after integration over all the photon angles.
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The parity-violating asymmetry is calculated in a sim-
ilar way. First we calculate the differential cross-section as
a function of the beam helicity he = ±1/2:

d5σhe
dΩp′dEp′dΩγ

=
1

32(2π)5
|p′|Eγ

M |k|

×1

2

∑′ |M|2
|Eγ + Ee′ + uγ · (p′ − k)| . (62)

The prime index over the summation means that the sum
is performed over all the spin variables except the incident
electron helicity. The parity-violating asymmetry of the
proton spectrum then reads

A =

(
d3σ1/2

dΩp′dEp′

− d3σ−1/2

dΩp′dEp′

)
/
(

d3σ1/2

dΩp′dEp′

+
d3σ−1/2

dΩp′dEp′

)

(63)
with

d3σhe
dΩp′dEp′

=

∫
d5σhe

dΩp′dEp′dΩγ
dΩγ . (64)

Now we are able to calculate the integral

∫ Ep′ cut

Ep′ min

d3σ

dΩp′dEp′

dEp′ (65)

for any value of ∆Ep′ 6= 0. As in the electron case, the
integral in the energy range Ep′ cut ≤ Ep′ ≤ Ep′ elas is
proportional to the Born elastic differential cross-section:

∫ Ep′ elas

Ep′ cut

d3σ

dΩp′dEp′

dEp′ = A(∆Ep′)
d2σ0(Ee, Q

2)

dΩp′

. (66)

Its calculation is given by the following ratio:

A(∆Ep′) =

(∫
K(∆Ep′)

d5σ

dΩp′dEp′dΩγ
dΩγ

)

/
(∫

d5σ

dΩp′dEp′dΩγ
dΩγ

)
(67)

with [31]

K(∆Ep′) ≡ eδvertex+δR

(1− δvacuum/2)2
. (68)

The meaning of K(∆Ep′) is clear. For each value of
θp′ , φp′ , Ep′ , θγ and φγ , the value of ∆Ep′ is equal
to Ep′ elas − Ep′ . The three-body kinematics give the
energy of the photon Eγ and the complete kinematics
of the outgoing electron θe′ , φe′ and Ee′ through the
energy-momentum conservation. Comparison with the
elastic-scattering e + p → e + p reaction at the same
angle gives the value of ∆Ee′ = Ee′ elas − Ee′ . The ratio
K = eδvertex+δR/(1−δvacuum/2)2 is the attenuation factor,
which depends on ∆Ee′ , induced by the internal radiative
correction on the electron side. It is a generalization to
all orders of the 1 + δ term of eq. (36) as can be seen if

Fig. 5. I(∆Ep′) as a function of the kinetic energy of the
detected proton for θp′ = 60◦.

we make a Taylor expansion of K. Finally the attenuation
factor A(∆Ep′) as defined in eq. (67) is the average at-
tenuation factor when we integrate over all the directions
of the photon. The explicit formulae used in the code to
calculate δvertex, δR and δvacuum are taken from [31]:

δR =
α

π

{
ln
( (∆Es)

2

EeEe′

)[
ln
(Q2

m2
e

)
−1

]
− 1

2
ln2
( Ee

Ee′

)

+
1

2
ln2
(Q2

m2
e

)
− π2

3
+Sp

(
cos2(θe′/2)

)}
, (69)

∆Es =
Ee

Ee′ elas
(Ee′ elas − Ee′) , (70)

δvacuum =
α

π

2

3

{
− 5

3
+ ln

(Q2

m2
e

)}
, (71)

δvertex =
α

π

{
3

2
ln
(Q2

m2
e

)
− 2− 1

2
ln2
(Q2

m2
e

)
+
π2

6

}
. (72)

The value of the integral I(∆Ep′) as a function of ∆Ep′

has been performed for 48◦ ≤ θp′ ≤ 77◦. It is plotted
in fig. 5 for one scattering angle of the detected proton.
The value of the cutoff parameter is chosen so that this
integral reaches its minimum value.

As in the electron case, we assume that for the kinetic-
energy range of the scattered proton Tp′ elas − ∆Ep′ ≤
Tp′ ≤ Tp′ elas

( d3σ

dΩp′dEp′

)

anal
= a0(θp′) + a1(θp′) (Tp′ − Tp′ elas)

+a2(θp′) (Tp′ − Tp′ elas)
2 . (73)
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Fig. 6. Parity-violating asymmetry as a function of the ki-
netic energy of the detected proton for θp′ = 60◦. The star ?
represents the Born asymmetry.

The determination of the three coefficients a
0
, a

1
and a

2

is obtained by the following conditions:

i) at Ep′ = Ep′ cut:
( d3σ

dΩp′dEp′

)
=
( d3σ

dΩp′dEp′

)

anal
, (74)

ii) at Ep′ = Ep′ cut:

∂

∂Ep′

( d3σ

dΩp′dEp′

)
=

∂

∂Ep′

( d3σ

dΩp′dEp′

)

anal
, (75)

iii)

∫ Ep′ elas

Ep′ cut

( d3σ

dΩp′dEp′

)

anal
dEp′ = A(∆Ep′)

×d2σ0(Ee, Q
2)

dΩp′

. (76)

The parity-violating asymmetry is calculated through the
relation (63) for Ep′ ≤ Ep′ cut and near the elastic peak,
its value is linearly interpolated between its value at
Ep′ = Ep′ cut and the Born asymmetry calculated at
Ep′ = Ep′ elas. The variation of this asymmetry as a func-
tion of the kinetic energy of the scattered proton is plotted
in fig. 6 for θp′ = 60◦.

4 Application to the G0 experiment at

forward angles

The G0 experiment [32], performed in Hall C at Jeffer-
son Lab, measures the parity-violating elastic electron

Fig. 7. Experimental yield as a function of t.o.f. for detector 8.
The elastic protons correspond to the rightmost peak.

scattering from the nucleon. Asymmetries of the order of
one part per million from scattering of a polarized elec-
tron beam are determined using a dedicated apparatus. It
consists of specialized beam monitoring and control sys-
tems, a cryogenic hydrogen target and a superconduct-
ing, toroidal magnetic spectrometer equipped with plastic
scintillation counters as well as fast readout electronics
for the measurement of individual events. The polarized
electrons scattered from a 20 cm liquid-hydrogen target;
the recoiling elastic protons were detected in a spectrome-
ter to allow simultaneous measurement of the wide range
of momentum transfer 0.12 ≤ Q2 ≤ 1.0 (GeV/c)2. The
spectrometer included an eight-coil superconducting mag-
net and eight sets (or octants) of scintillating detectors.
Four octants (numbered 1-3-5-7) and their associated elec-
tronics were built by the North-American (USA, Canada)
part of the G0 Collaboration and four octants (2-4-6-8)
and their associated electronics were built by the French
(IPN Orsay, LPSC Grenoble) part of the G0 Collabora-
tion. Each set consisted of 16 scintillator pairs used in
coincidence to cover the range of momentum transfers
(smallest detector number corresponding to the lowest
momentum transfer). The scattering angle varies from 52
to 76 degrees, depending on the detector number. Because
of the correlation between the momentum and scatter-
ing angle of the elastic protons (higher momentum cor-
responds to more forward proton scattering angles), de-
tector 15 covered the range of momentum transfers be-
tween 0.44 and 0.88 (GeV/c)2, which we divided into three
bins having average momentum transfers of 0.51, 0.63 and
0.79 (GeV/c)2. Custom time-encoding electronics sorted
detector events by time of flight (t.o.f.); elastic protons ar-
rived about 20 ns after the passage of the electron bunch
through the target. A typical time-of-flight spectrum is
shown in fig. 7. The final results of the G0 forward-angle
experiment are shown in [11].

Radiative corrections for G0 have been estimated in a
simulation using the G0-GEANT package [24]. The elec-
tron can, in principle, lose all its energy through radiation,
but the probability that it loses 500 MeV or less is 96%.
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Moreover, 60% lose 1 keV or less. The few events for which
the electron energy loss is more than 500 MeV correspond
to protons having times of flight out of the G0 experimen-
tal cuts, thus they are not considered in our calculation.
Therefore, the GEANT simulations have been done in the
energy interval Einc = 2.5–3.0 GeV only and for recoil pro-
ton angle θp′ = 48◦–77◦ and energy Tp′ = 2 MeV − T elp′ .
The cross-sections have been interpolated for intermedi-
ate values using a spline method. In order to obtain rates,
each event (number j) is normalized through a weight wj

proportional to the cross-section [33]:

wj = L
∆φ

NT

d3σj
dΩdE

sin θj [θmax(E
inc
j )− θmin(E

inc
j )]

×[Emax(E
inc
j , θj)− Emin(E

inc
j , θj)] , (77)

where L is the luminosity, ∆φ is the polar angle opening
and NT is the number of drawings. In the case of elastic
scattering (Born term), the weight is simply given by

wj = L
∆θ∆φ

NT
sin θj

d2σj
dΩ

.

5 Results

5.1 Time-of-flight spectra

Two calculations are performed without and with RC:

– In the first case, the t.o.f. of elastically scattered pro-
tons, without any energy loss nor radiative correc-
tions is calculated. The width of the peak is essentially
given by the experimental resolution as calculated by
GEANT. The elastic peak is fitted with a Gaussian
allowing to determine the position of the maximum,
in order to define cuts within which the asymmetry is
calculated. The resulting spectra are shown in fig. 8,
where only detector 8, corresponding to the middle of
the focal plane, is shown for reference. The only differ-
ence in the two spectra is a binning of 250 ps for the
French (FR) electronics (top) and a binning of 1 ns for
the North-American (NA) electronics (bottom).

– In the second case, the proton t.o.f. spectra are cal-
culated after applying energy losses and full RC. The
result obtained for detector 8 is shown as a solid line in
fig. 9, overlaid to the pure elastic spectra (dash-dotted
line).

5.2 Asymmetries

The asymmetry is calculated using eq. (26) with the fol-
lowing numerical values [3]:

sin2θW = 0.23117 ,

GF = 1.16639× 10−5 GeV−2 ,

Rp
V = −0.054± 0.033 ,

Rn
V = −0.0143± 0.0004 ,

R
(0)
V = 0.
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Fig. 8. Simulated elastic-proton time-of-flight distributions for
Det. 8 (top: FR, bottom: NA). The Gaussian fits are performed
to extract the position of the mean.
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Fig. 9. Comparison of time-of-flight spectra (FR Det. 8) with-
out (dash-dotted line) and with (solid line) radiative correc-
tions.

Gs
E and Gs

M are parametrized with a dipole form accord-
ing to [3]. A discussion of the latest electromagnetic form
factors can be found in [11]. The strangeness content pa-
rameters are from Hammer et al. [34] with µs = −0.24
and ρs = −2.93. These values have been taken from a re-
view paper by Kumar and Souder [2]. These parameters
are used here only as an example of a strange asymmetry
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Fig. 10. Asymmetry distributions (in ppm), for each detector.
The dash-dotted line represents the elastic case, the solid one
the radiative case.

calculation. Electromagnetic radiative corrections are
rather insensitive to the electroweak parameters. De-
tailed calculations are shown on the FR detectors spectra
only. Figure 10 shows the asymmetry distribution without
(dash-dotted line) and with RC (solid line). In the elastic
case, the asymmetry reduces to the one calculated from
the Born term only, and it can be compared directly to
theoretical models.

The mean asymmetry value is plotted in fig. 11. The
effect of radiative corrections is to increase the average
asymmetry, following the increase in Q2. The ratios be-
tween elastic and RC-corrected asymmetries are given in
table 1.

The asymmetry increase is of the order of 0.5–1.0% for
detectors 1–9, reaching 2.0 % for detector 12 and up to
3.0% for detector 14. These ratios should be almost inde-
pendent of the model chosen and therefore valid for the no-
strangeness value A0. It is not clear if the dispersion of cor-
rection factors between 2 adjacent detectors (e.g. between
Det. 8-9-10 or 10-11-12), which is of the order of 0.3%, is
an indication of the present statistical/systematical errors
or if it is a genuine effect due to differences in acceptance.
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Fig. 11. Mean value of the asymmetry for each detector. The
stars represent the elastic case, the triangles the radiative one.
The “French cuts” on the t.o.f. distributions have been applied.

Table 1. Ratio of asymmetries Ael/ARC as a function of the
detector number where Ael is the elastic (Born term) asymme-
try and ARC is the asymmetry corrected for radiative emission.

Detector # Ratio
1 0.9971380

2 0.9898130

3 0.9912670

4 0.9911590

5 0.9933250

6 0.9964800

7 0.9915390

8 0.9881630

9 0.9910010

10 0.9828710

11 0.9871740

12 0.9790010

13 0.9767610

14 0.9725560

15/1 Q2 = 0.51 0.9922500

15/2 Q2 = 0.63 1.008340

15/3 Q2 = 0.79 1.012570

5.3 Uncertainty estimate

An error estimate is made based on the assumption that
the elastic cuts have a 10% uncertainty. Therefore, the ra-
diative corrections are calculated for cuts which are 5%
larger than the elastic cuts (by increasing the upper limit
by 2.5% and decreasing the lower limit by 2.5%) and 5%
smaller than the elastic cuts (by decreasing the upper limit
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by 2.5% and increasing the lower limit by 2.5%). Then we
take the ratio of these two quantities for each detector.
This should represent an upper limit of the radiative cor-
rection uncertainties since the elastic cuts are known to
better than 10%. The corresponding uncertainty would
vary slowly from 0.1% for Det. 1 to 0.5% for Det. 13, 1%
for Det. 14 and between 0.0% and 0.7% for Det. 15, de-
pending on the Q2 cut. An alternative error estimate is
obtained by making a global fit of the ratio Ael/ARC with
a polynomial and assuming that the difference with the
actual RC correction is due to systematics: in that case
the uncertainty is globally estimated to be of the order
of 0.1–0.3% or 10% of the actual correction depending on
detector number.

Another problem which has been investigated is the
one of correction double counting. When the background
under the elastic peak is removed by a pure fitting proce-
dure, it also contains the RC tail contribution to the peak.
Therefore, the corresponding elastic asymmetry should
not be corrected for RC effects. In order to estimate the
sensitivity of the RC corrections, at the border of the elas-
tic peak, we have calculated them by adding or removing
1 ns from the elastic cuts. This effect has been estimated
to be about 2% of the RC corrections which are them-
selves of the order of 2%, so that double counting can be
neglected at first order.

6 Summary and conclusions

We have calculated the full electromagnetic radiative cor-
rections for elastic ep scattering in leptonic or hadronic
variables. A code has been constructed to extract the
parity-violating asymmetry from the experimental mea-
sured asymmetry. The procedure is validated through a
comparison between the simulation results and the data
in the kinematic configuration of the PV-A4 experiment.
Radiative corrections for the G0 parity-violating elastic-
scattering experiment have been estimated by feeding our
model calculations through a Monte Carlo detector sim-
ulation. This code could also be used for the next asym-
metry measurement in the backward-angle configuration
of G0.

The authors are grateful to the PV-A4 and G0 Collaborations
for their constructive remarks and support. The comments of
Jiangliai Liu and Kaz Nakahara are particularly acknowledged.
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26. J. Arvieux et al., G0-Collaboration internal report,

http://g0web.jlab.org/analysislog/Analysis Notes/

050711 100102/PV-short-110705.pdf, July 2005.
27. S. Eidelman et al., Phys. Lett. B 592, 1109 (2004).
28. S. Ong, M.P. Rekalo, J. Van de Wiele, Eur. Phys. J. A 6,

215 (1999).
29. B. Collin, Thesis, Université Paris-Sud, November 2002.
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